Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Guo-Wu Rao and Wei-Xiao Hu*

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China

Correspondence e-mail: huyang@mail.hz.zj.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$
R factor $=0.040$
$w R$ factor $=0.121$
Data-to-parameter ratio $=8.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3,6-Bis(4-chlorophenyl)-1-isobutyryl-1,4-dihydro-1,2,4,5-tetrazine

The title compound, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}$, was prepared from isobutyric anhydride and 3,6-bis(4-chlorophenyl)-1,2-dihydro-1,2,4,5-tetrazine. The central six-membered ring has a boat conformation.

Comment

1,2,4,5-Tetrazine derivatives have a high potential for biological activity and possess a wide range of antiviral and antitumor properties. These derivatives have been widely used in the production of pesticides and herbicides (Sauer, 1996). As part of our continuing interest in the structure-activity relationship of 1,2,4,5-tetrazine derivatives (Hu et al., 2002, 2004), we have isolated the product, (I), of the reaction of isobutyric anhydride and 3,6-bis(4-chlorophenyl)-1,2-dihydro-1,2,4,5-tetrazine, as yellow crystals suitable for X-ray analysis.

(I)

The molecular structure of (I) is illustrated in Fig. 1. Atoms N2, C3, N5 and C6 are coplanar, with the largest deviation from the plane being -0.024 (3) \AA for atom N5. Atoms N1 and N4 deviate from this plane by 0.413 (8) and 0.344 (8) \AA, respectively, indicating a boat conformation.

There is an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen interaction, building a zigzag chain parallel to the a axis (Table 1 and Fig. 2).

Experimental

The title compound was prepared according to the procedure of Rao \& Hu (2004). A solution of the compound in ethanol was concentrated gradually at room temperature to afford yellow prisms (m.p. 472-474 K).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O} \\
& M_{r}=375.25 \\
& \text { Orthorhombic, } P 2_{1} 2_{1} 2_{1} \\
& a=7.268(4) \AA \AA \AA \\
& b=11.813(1) \AA \\
& c=21.282(3) \AA \\
& V=1827.2(10) \AA^{3} \\
& Z=4 \\
& D_{x}=1.364 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Received 7 September 2005 Accepted 13 September 2005 Online 17 September 2005

Figure 1
The structure of (I), showing the atom-labeling scheme. Ellipsoids are drawn at the 30% probability level.

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega / 2 \theta$ scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.912, T_{\text {max }}=0.930$
2019 measured reflections
1997 independent reflections 840 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{c}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0446 P)^{2}\right. \\
\quad+0.4072 P] \\
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.20 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=
\end{array}-0.21 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
View showing the $\mathrm{N}-\mathrm{H} \cdots$ O hydrogen bonding and the formation of the zigzag chain. For clarity, only H atoms involved in hydrogen bonding (dashed lines) are represented. [Symmetry code: (i) $x-\frac{1}{2}, \frac{1}{2}-y, 1-z$.]

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 for Windows (Version 1.05; Farrugia, 1997) and PLATON (Spek, 2003; software used to prepare material for publication: WinGX (Farrugia, 1999).

We are very grateful to the National Natural and Scientific Foundation (grant No. 20272053) for financial support.

References

Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Harms, K. \& Wocadlo, S. (1995) XCAD4. University of Marburg, Germany. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Hu, W. X., Rao, G. W. \& Sun, Y. Q. (2004). Bioorg. Med. Chem. Lett. 14, 11771181.

Hu, W. X., Sun, Y. Q., Yuan, Q. \& Yang, Z. Y. (2002). Chem. J. Chin. Univ. 23, 1877-1881.
Rao, G. W. \& Hu, W. X. (2004). J. Chem. Res. 6, 408-409.
Sauer, J. (1996). Comprehensive Heterocyclic Chemistry, Vol. 6, edited by A. J. Boulton, 2nd ed., pp. 901-955. Oxford: Elsevier.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

